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An efficient quantum-mechanical approach is presented for the mechanical treatment is necessary for an accurate description
computation of the short-term propagation of nuclear polarization of spin-propagation processes, since it has been demon-
in many-spin systems, known as spin diffusion, which carries strated also experimentally that for short evolution times 1H
structural information. It is based on the fact that for short time spin diffusion is indeed a deterministic, reversible process
intervals the spin evolution under dipolar coupling can be ex- (12) . An exact quantum-mechanical treatment of N dipolar-
pressed analytically by rotations in three- and four-dimensional

coupled spins-1
2 involves propagator matrices in the zero-subspaces of the Liouville space. Due to its high computational

efficiency, the approach allows the treatment of several dozens of quantum space of the dimension F2N

N G (9) , which renders
coupled spins and is well suited to the rapid calculation of spin
propagation in oriented samples and in powders. q 1997 Academic calculations even for small systems with N ú 10 prohibi-
Press tively expensive.

It has been realized from the very beginning that important
aspects of spin propagation can also be described with sim-

INTRODUCTION plified models. Bloembergen (1) formulated the spatial mi-
gration of Zeeman order in terms of a diffusion equation.

Monitoring the propagation of nuclear-spin polarization Using perturbation theory, a transition probability for spin
in solids, sometimes termed spin diffusion (1) , provides flip-flop processes can be derived, involving the zero-quan-
structural information on crystalline and amorphous solids. tum lineshape function for the spin pair under consideration
In spin-propagation experiments the exchange of Zeeman (13) . Unfortunately, there is at present no satisfactory theory
spin order is caused by dipolar spin couplings reflecting available to calculate this zero-quantum lineshape function
internuclear distances and angles. In the past, such informa- for quantitative comparison with experimental data. While
tion has been successfully extracted using a variety of experi- a diffusion description is plausible for longer mixing times,
mental schemes (2–7) . it is inappropriate for shorter times due to the unitary charac-

Spin-diffusion experiments resemble in concept and ter of the underlying process (12) . In recent years, computa-
purpose liquid-state NMR cross-relaxation experiments tional procedures have been developed on a classical and
(8, 9 ) . An important asset of cross relaxation is the capa- on a quantum-mechanical basis for the description of spin
bility to back-calculate the cross-relaxation spectrum from diffusion (14) .
a molecular model (10 ) to readily check for consistency We present here a simplified approach for the accurate
between model and experiment. Structurally most signifi- calculation of short-term spin propagation. It is well known
cant is thereby the short-term behavior of cross relaxation that for a system of two coupled spins-1

2, an analytical solu-
in the initial-rate regime (9 ) . For longitudinal spin relax- tion of the Liouville–von Neumann equation exists: A dipo-
ation of macromolecules in the liquid state, only one-spin lar interaction H12 between spins I1 and I2 induces a rotation
order is considered and the cross-relaxation process is in a subspace spanned by the one-spin operators I1z , I2z ,
described by a master equation for the polarization, which and the zero-quantum operator I1y I2x 0 I1x I2y . The rotation
yields for N spins-1

2 a set of N coupled linear differential frequency is determined by the dipolar coupling strength.
equations. Since the dimension of the problem increases Extension to a three-spin or larger spin system is not straight-
linearly with the number of spins, numerical calculations forward, since H12 does not commute with the dipolar inter-
including several hundred spins are possible and are rou- actions H13 and H23 to a third spin. However, for short times
tinely used for structure refinements of biomolecules [ for Dt , the propagator U Å exp[0iDt(H12 / H13 / H23)]
an overview see (11 ) ] . can be approximated by exp(0iDtH12)exp(0iDtH13)

In the solid state, on the other hand, multispin effects play 1 exp(0iDtH23) . The geometric analogue is the commuta-
a crucial role and impede the exact theoretical treatment of tion of infinitesimal rotations about different axes in real

space. Hence, for short Dt , U describes independent rota-spin propagation in large spin systems. A fully quantum-
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123COG-WHEEL MODEL FOR SPIN PROPAGATION

tions in the corresponding three-dimensional Liouville sub- usually small chemical-shift differences and obtain, in a
frame rotating with the Larmor frequency, the Hamiltonianspaces. During Dt the zero-quantum terms Iiy Ijx 0 Iix Ijy

evolve also to zero-quantum terms of the type Iiy Ikx 0 Iix Iky ,
Ijy Ikx 0 Ijx Iky , as well as to three-spin terms. These rotations H Å ∑

iõj

Hij . [3]
can also be described analytically. In this way, the time
evolution of Zeeman order Iiz experiences a sequence of

The time evolution of the density operator s( t) will be com-rotations in three- and four-dimensional subspaces during
puted stepwise for small increments Dt , such that the propa-successive time intervals Dt . The crucial time-saving feature
gatorof the proposed method is the restriction to low-order prod-

uct-operator terms. Transformations that would lead to
U(Dt) Å e0iHD t [4]

higher-order terms are neglected. The evolution consists thus
of a series of low-dimensional rotations resembling the can be approximated, based on the Zassenhaus formula (15) ,
mechanism of a system of cog wheels, and we call this by
approach the ‘‘cog-wheel method.’’

In this work, only three-spin and lower-order terms are U à ∏
iõj

exp(0iHijDt) [5]
considered in the density operator. Extension to higher-order
terms is possible at the expense of rapidly increasing com-
puter memory and computational time requirements. Restric- despite the noncommutativity of the various terms, [ Hij ,
tion to spin orders that are smaller than the total number of Hik] x 0.
spins implies that the spin-propagation behavior is predict- In the following, we develop the necessary transformation
able only for finite evolution times. However, it is the short- equations for the individual propagator terms exp(0iHijDt) .
term regime which is structurally most informative since The initial state of the spin system shall be characterized by
multiple-pathway contributions, which tend to intermix the polarization of spin Ii , s(0) Å Iiz . The evolution under a
structural information, play a negligible role. term Hij follows the transformation

The outline of the remainder of this paper is as follows:
In the next section, the general theory is developed. In the
following section, the theory is applied to selected geometric Iiz

H
ij
Dt

Iiz(1 / cos vijDt) /2
arrangements of the nuclear spins and compared with exact

/ Ijz(1 0 cos vijDt) /2quantum-mechanical calculations.
/ (Iiy Ijx 0 Iix Ijy)sin vijDt , [6]

THEORY
which represents a well-known rotation in the three-dimen-

We consider a homonuclear system consisting of N spins sional zero-quantum frame with constant sum polarization
of I Å 1

2 which are coupled by the secular dipolar interaction »Iiz / Ijz… . For an arbitrary initial condition s0 Å aIiz / bIjz

between pairs of spins Ii and Ij / c(Iiy Ijx 0 Iix Ijy) , evolving in the time interval Dt to s(Dt)
Å a *Iiz / b *Ijz / c *(Iiy Ijx 0 Iix Ijy) , we find, in matrix nota-
tion,Hij Å vij(2Iiz Ijz 0 Iix Ijx 0 Iiy Ijy) [1]

F a
b
c
G H

ij
Dt F a *

b *
c *
G Å F (1 / cos vijDt) /2 (1 0 cos vijDt) /2 0(sin vijDt) /2

(1 0 cos vijDt) /2 (1 / cos vijDt) /2 (sin vijDt) /2
sin vijDt 0sin vijDt cos vijDt

GFa
b
c
Gr [7]

with the dipolar coupling frequency Subsequent propagation of the resulting two-spin terms
Iiy Ijx 0 Iix Ijy under additional dipolar interactions Hik and
Hjk proceeds also in the form of rotations in low-dimensional

vij Å 0
m0

4p
g 2 h

2p
P2(cos uij)

r 3
ij

[2] subspaces:

determined by the gyromagnetic ratio g, the internuclear
distance rij , and the angle uij of the internuclear vector with

Iiy Ijx0 Iix Ijy

H
ik
Dt

respect to the static magnetic field B0 . P2(x) Å (3x 2 0 1)/
2 is the second-rank Legendre polynomial. We neglect the (Iiy Ijx0 Iix Ijy)cos vikDt cos(vikDt /2)
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124 BRÜSCHWEILER AND ERNST

/ (Ijy Ikx0 Ijx Iky)sin vikDt sin(vikDt /2)

0 2(Ijx Ikx/ Ijy Iky)Iizcos vikDt sin(vikDt /2)

0 2(Iix Ijx/ Iiy Ijy)Ikzsin vikDt cos(vikDt /2) [8]

and

Iiy Ijx0 Iix Ijy

H
jk
Dt

(Iiy Ijx0 Iix Ijy)cos vjkDt cos(vjkDt /2)

0 (Iiy Ikx0 Iix Iky)sin vjkDt sin(vjkDt /2)

/ 2(Iix Ikx/ Iiy Iky)Ijzcos vjkDt sin(vjkDt /2)
FIG. 1. Schematic view of the cog-wheel approach. Solid arrows indi-/ 2(Iix Ijx/ Iiy Ijy)Ikzsin vjkDt cos(vjkDt /2) . [9] cate evolution under the exact dipolar Hamiltonian H and dashed arrows

refer to a subset that restricts the multiple-spin order as discussed in the
text. The spin terms are abbreviated according to Ii å Iiz , Iij å Iiy Ijx 0These transformations produce three-spin terms 2(Iix Ijx /
Iix Ijy , I k

ijk å 2(Iix Ijx / Iiy Ijy)Ikz .Iiy Ijy)Ikz , 2(Iix Ikx / Iiy Iky)Ijz , and 2(Ijx Ikx / Ijy Iky)Iiz , which
again evolve further into two-spin, three-spin, and four-spin
terms under additional dipolar interactions. Here, a key fea-
ture of the cog-wheel approach becomes active: We disre- which do not create four-spin or higher-order terms, as dis-
gard all those further transformations that could produce cussed above, applies. The cog-wheel approach allows a
four-spin terms. This implies that, e.g., the term 2(Iix Ijx / highly efficient computation of the short-term evolution. All
Iiy Ijy)Ikz evolves exclusively under the dipolar Hamiltonians trigonometric functions can be evaluated at the beginningHik and Hjk . All other dipolar terms, such as Hil , Hj l , and of the computation and can be stored in a look-up table.Hkl , are disregarded in their effect at this particular stage of All rotations in the cog-wheel approximation are unitary,
evolution. It is easily seen that the Hamiltonian Hij commutes leading, on the one hand, to a numerically stable behavior
with the above density-operator term and causes no transfor- under the iterative application of rotations. This implies,
mation. The two active terms cause the transformations on the other hand, a nonsystematic neglect of higher-order

propagator terms: Higher-order powers of individual dipolar
2(Iix Ijx / Iiy Ijy)Ikz

H
ik
Dt

terms are taken into account, but products between different
dipolar terms are neglected in the propagator of Eq. [5] .2(Iix Ijx / Iiy Ijy)Ikzcos vikDt cos(vikDt /2)
This is however of no consequence, provided that the time

0 2(Ijx Ikx / Ijy Iky)Iizsin vikDt sin(vikDt /2) increment Dt is selected to be sufficiently short (15) .
The neglect of four-spin and higher-order terms in the0 (Ijy Ikx 0 Ijx Iky)cos vikDt sin(vikDt /2)

density operator leads to a drastic reduction of the number
/ (Iiy Ijx 0 Iix Ijy)sin vikDt cos(vikDt /2) [10] of basis operators to be considered. While for an unrestricted

calculation of spin propagation Z (N ) Å F2N

N G zero-quantumand

operators are sufficient for an N-spin-1
2 system, the restriction

2(Iix Ijx / Iiy Ijy)Ikz

H
jk
Dt

to three-spin terms requires only Z (3) Å N / FN

2 G (N 0
2(Iix Ijx / Iiy Ijy)Ikzcos vjkDt cos(vjkDt /2)

1) operators. For example, for an eight-spin system, the
0 2(Iix Ikx / Iiy Iky)Ijzsin vjkDt sin(vjkDt /2) respective numbers are Z (N )Å 12,870 and Z (3) Å 204, which

greatly reduces the computational time required. The time-0 (Iiy Ikx 0 Iix Iky)cos vjkDt sin(vjkDt /2)
saving is even larger when compared with a straightforward

0 (Iiy Ijx 0 Iix Ijy)sin vjkDt cos(vjkDt /2) . [11] propagation of the full 2N 1 2N density matrix with 65,536
matrix elements.

On the other hand, the restriction to low spin-order termsThe successive and systematic application of these types
of rotations leads to the cog-wheel propagation schemati- prevents calculation of the long-term evolution which neces-

sarily involves higher spin-order terms. For example, in thecally shown in Fig. 1. The solid lines in the figure take into
account all conceivable dipolar transformations, while for context of polarization-echo experiments (12) , the higher

spin-order terms become part of the ‘‘spin memory’’ thatthe broken lines the restriction to the Hamiltonian terms
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125COG-WHEEL MODEL FOR SPIN PROPAGATION

tion. In Fig. 3 the initially polarized spin I5 transfers its polar-
ization more rapidly to its neighbors than spin I1 in Fig. 2,
since I5 is coupled to two neighbors at a distance of 3 Å
(I4 and I6), whereas spin I1 has only one neighbor spin (I2).
Within the mentioned evolution times the polarization of the
initially polarized spin drops to about half of its original value.

It is interesting to compare the third-order cog-wheel ap-
proach with the next lower order of approximation, a second-
order cog-wheel procedure where only one-spin and two-spin
product-operator terms are retained. In Fig. 2A the curves for
the second-order approximation are included. It is apparent
that the divergence from the exact solution is much more
rapid than that for the third-order approximation. For an evolu-
tion time of 60 ms, the deviation from the exact solution is
approximately a factor of 10 larger than that for the third-FIG. 2. Comparison of the cog-wheel approach (A) with an exact quan-
order approximation. In terms of the permitted evolution timetum-mechanical spin calculation (B) for a linear chain of 10 proton spins,

which is aligned parallel to the magnetic field B0 , with spacing between for a restricted inaccuracy, the third-order cog-wheel approach
spins of 3 Å. The time behavior of Zeeman spin order »Iiz … ( i Å 1, . . . , allows for an extension by about a factor of 2.
10) is shown and the curves are labeled with the corresponding spin number. As a second example, six proton spins are placed at the
At t Å 0, all polarization is concentrated on the first spin: s(0) Å I1z /Tr

corners of a regular octahedron with side length of 3 Å. A{I 2
1z} with »I1z … Å 1. The integration time step Dt was set to 5.0 1 1007 s.

seventh spin is placed in the center of the octahedron andIn Panel A the results of a second-order cog-wheel calculation retaining
only one-spin and two-spin terms are indicated by dashed lines. has a distance of 3/

√
2 Å to the other spins. Figure 4 shows

the evolution of one-spin z polarization if at t Å 0 the central
spin is polarized s(0) Å I1z /Tr{I 2

1z}. The magnetic B0 field
is applied parallel to a fourfold symmetry axis, leading to a

allows the reversal of the time evolution for the creation of pair and a quartet of equivalent corner spins. The rather
an echo. For the simulation of this kind of experiments, high spin density surrounding the central spin causes a fast
exact calculations seem to be indispensable. monotonous drop of its magnetization within about 15 ms.

For this period, the polarization difference between the ap-
NUMERICAL APPLICATIONS proximate treatment and the cog-wheel method is smaller

than 2% of the initial polarization.
The cog-wheel model is compared here with exact quan- The cog-wheel approach shows a remarkably high compu-

tum-mechanical calculations. For the exact treatment, the tational speed. On an SGI Onyx computer it requires four
Liouville–von Neumann equation is solved numerically seconds CPU time for the ten-spin chain while the exact
by diagonalization of the total dipolar Hamiltonian H Å treatment lasts for more than one day.
(iõj Hij Å R01DR using the program library GAMMA (16) ,
where D is a diagonal matrix and R is a unitary transforma-
tion matrix. The time evolution of an initial spin-density
operator s(0) is then calculated according to

s( t) Å R01e0iDtRs(0)R01e iDtR . [12]

For the calculations given here, all possible pairwise dipolar
couplings are accounted for.

First, a linear chain of 10 proton spins is considered which
is aligned parallel to the external magnetic B0 field. The spac-
ing between next neighbors is 3.0 Å. The evolution of one-
spin order for the normalized initial conditions s(0) Å I1z /
Tr{I2

1z} and s(0) Å I5z /Tr{I2
5z} is shown in Figs. 2 and 3,

respectively. In the Panels A the approximate cog-wheel re-
sults are shown while in Panels B the exact results using Eq.
[12] are given. For evolution times shorter than 60 ms in Fig.
2 and 40 ms in Fig. 3 the difference between the exact and FIG. 3. Same as Fig. 2, but with initial condition s(0) Å I5z /Tr{I 2

5z}
with »I5z … Å 1.approximate results is smaller than 1.5% of the initial polariza-
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126 BRÜSCHWEILER AND ERNST

of Eq. [1] . While the corresponding transformation rules of
Eqs. [7] – [11] need to be modified, the concept of the cog-
wheel approach seems still applicable.

The decay of polarization of an initially polarized spin
carries information on local molecular structure similar to
homonuclear relaxation in liquid-state NMR. Magnetization
transfer between protons attached to specifically labeled 13C
sites using heteronuclear editing techniques (12) , on the
other hand, yields specific distance information for both
crystalline and amorphous systems. For these types of exper-
iments, the cog-wheel model for spin propagation may help
to relate experimental observations more quantitatively to
molecular structural models.
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